Pharmacological characterization of Na+ influx via voltage-gated Na+ channels in spinal cord astrocytes.

نویسندگان

  • C R Rose
  • B R Ransom
  • S G Waxman
چکیده

Spinal cord astrocytes display a high density of voltage-gated Na+ channels. To study the contribution of Na+ influx via these channels to Na+ homeostasis in cultured spinal cord astrocytes, we measured intracellular Na+ concentration ([Na+]i) with the fluorescent dye sodium-binding benzofuran isophthalate. Stellate and nonstellate astrocytes, which display Na+ currents with different properties, were differentiated. Baseline [Na+]i was 8.5 mM in these cells and was not altered by 100 microM tetrodotoxin (TTX). Inhibition of Na+ channel inactivation by veratridine (100 microM) evoked a [Na+]i increase of 47.1 mM in 44% of stellate and 9.7 mM in 64% of nonstellate astrocytes. About 30% of cells reacted to veratridine with a [Na+]i decrease of approximately 2 mM. Qualitatively similar [Na+]i changes were caused by aconitine. The effects of veratridine were blocked by TTX, amplified by (alpha-)scorpion toxin and usually were readily reversible. Veratridine-induced [Na+]i increases were reduced upon membrane depolarization with elevated extracellular [K+]. Recovery to baseline [Na+]i was unaltered during blocking of K+ channels with 4-aminopyridine. [Na+]i increases evoked by the ionotropic non-N-methyl--aspartate receptor agonist kainate were not altered by TTX. Our results indicate that influx of Na+ via voltage- gated Na+ channels is not a prerequisite for glial Na+,K+-ATPase activity in spinal cord astrocytes at rest nor does it seem to be involved in [Na+]i increases evoked by kainate. During pharmacological inhibition of Na+ channel inactivation, however, Na+ channels can serve as prominent pathways of Na+ influx and mediate large perturbations in [Na+]i, suggesting that Na+ channel inactivation plays an important functional role in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocyte Na+ channels are required for maintenance of Na+/K(+)-ATPase activity.

Astrocytes in vitro and in situ have been shown to express voltage-activated ion channels previously thought to be restricted to excitable cells, including voltage-activated Na+, Ca2+, and K+ channels. However, unlike neurons, astrocytes do not generate action potentials, and the functional role of voltage-activated channels in astrocytes has been an enigma. In order to study the function of Na...

متن کامل

Differential modulation of TTX-sensitive and TTX-resistant Na+ channels in spinal cord astrocytes following activation of protein kinase C.

TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents are expressed in high densities (2-8 channels/microns2) in astrocytes cultured from neonatal rat spinal cord. The two Na+ current types differ up to 1000-fold in their TTX sensitivity and additionally have different steady-state activation (g-V) and inactivation (h infinity) curves. Expression of TTX-S and TTX-R Na+ currents is confin...

متن کامل

Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ.

The major pathological correlate of cerebral palsy is ischemic injury of CNS white matter. Histological studies show early injury of glial cells and axons. To investigate glial cell injury, I monitored intracellular Ca2+ and cell viability in fura-2-loaded neonatal rat white matter glial cells during ischemia. Fura-2 fixation combined with immunohistochemistry revealed that fura-2-loaded cells ...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE.

Axonal degeneration contributes to the development of non-remitting neurological deficits and disability in multiple sclerosis, but the molecular mechanisms that underlie axonal loss in multiple sclerosis are not clearly understood. Studies of white matter axonal injury have demonstrated that voltage-gated sodium channels can provide a route for sodium influx into axons that triggers reverse op...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 78 6  شماره 

صفحات  -

تاریخ انتشار 1997